# piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius) 

J. Wang,* X. Ren, $\dagger$ T. A. Miller $\dagger$ and Y. Park*<br>*Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, USA; $\dagger$ Department of Entomology, University of California, Riverside, CA, USA


#### Abstract

We identified two different groups of piggyBac-like elements (PLE) in the tobacco budworm, Heliothis virescens, and named them HvPLE1 and HvPLE2. An intact copy of HvPLE1 revealed the characteristics of PLE: inverted terminal repeats, inverted subterminal repeats, and an open reading frame encoding transposase, whereas other HvPLE1 copies and all the HvPLE2 copies carried disruptive mutations in the region encoding transposase. We also identified none to two bands per genome hybridized to a probe of Trichoplusia ni piggyBac in genomic Southern blotting, which are different from HvPLE1 or HvPLE2. Analysis of the sequences of multiple copies of HvPLE1 and HvPLE2 suggests that the PLEs are closely related to the T. ni piggyBac, of relatively young age, and independently entered the $H$. virescens genome.


Keywords: piggyBac-like elements, PLE, transposon, tobacco budworm, vectorette PCR, inverse PCR, transposable element display.

## Introduction

Transposable element (TE) is a mobile genetic component in the genome of an organism. Active TEs are self-replicating and mobile in the genome, thus functioning as a mutagen that drives evolutionary processes by causing deleterious or adaptive mutations (reviewed in Kazazian, 2004). The importance of TE in the evolutionary process has been recognized by the ubiquitous presence of TE-derived sequences in the genomes of nearly all eukaryotes and by

### 10.1111/j.1365-2583.2006.00653

Received 8 December 2005; accepted after revision 23 February 2006. Correspondence:Yoonseong Park, Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA. Tel.: 785532 5763; fax: 785532 6232; e-mail: ypark@ksu.edu. Jianjun Wang: Current address, Department of Plant Protection, Yangzhou University, Yangzhou 225009, China.
the horizontal transfer of TE crossing the species barrier. The use of TE for generating transgenic organisms has recently been also recognized as an important tool. Delivering a gene of interest into the genome of an organism to generate a novel phenotype is a promising tool for studying basic science and for various applications of transgenic technology (reviewed in Handler, 2002a; Wimmer, 2003; Robinson et al., 2004). The piggyBac-based random mutagenesis, gene tagging and enhancer trapping system have also been developed in Drosophila and in other arthropods (Lorenzen et al., 2002; Horn et al., 2003; Thibault et al., 2004).

The piggyBac element, one of the most widely used TE in transgenesis of insects and mammals (Handler, 2002b; Ding et al., 2005), was originally discovered in a cell line of cabbage looper moth, Trichoplusia ni (Fraser et al., 1983; Cary et al., 1989). The T. ni piggyBac is 2472 bp in length and contains 13 bp inverted terminal repeats (ITRs) with asymmetrically located 19 bp inverted subterminal repeats. The piggyBac transposes via a strict 'cut-and-paste' mechanism, inserting exclusively at $5^{\prime}$-TTAA- $3^{\prime}$ target sites and excising precisely, leaving no footprint (Fraser et al., 1996). The mobility of piggyBac in a broad range of insects indicates that the piggyBac-like elements (PLE) might be widely distributed in distantly related insects and other species beyond T. ni. For example, a TE that is nearly identical to the T. ni piggyBac was found in the Oriental fruit fly (Handler \& McCombs, 2000). Fifty divergent PLE sequences recently were identified from genome sequences of a diverse range of organisms, including fungi, plants, insects, crustaceans, urochordates, amphibians, fishes and mammals (Sarkar et al., 2003).

We were interested in the distribution of the PLEs in a lepidopteran insect pest, the tobacco budworm, Heliothis virescens (Fabricius). We report two distinct PLEs HvPLE1 and HvPLE2, and the presence of a unique band hybridized by T. ni piggyBac in the $H$. virescens genome.

## Results

Heliothis virescens piggyBac-like elements HvPLE1, HvPLE2 and HvPLE3
The degenerate primers PLEF266 and PLER351 successfully amplified a 263 bp fragment HvPLE1, having $43 \%$
identity with $T$. ni piggyBac at the amino acid level in the amplified region. Subsequent inverse PCR yielded a number of partially overlapping clones revealing ITR and 5'- and 3 '-flanking sequences. A representative copy of fulllength HvPLE1, designated as HvPLE1.1, eventually was isolated by using the primers located on the flanking region. The HvPLE1.1 is 2285 bp long with perfect 16 bp ITRs flanking a single open reading frame (ORF) encoding for a transposase of 581 amino acid residues (Fig. 1A). Similar to other PLE, the HvPLE1.1 contains three C/G residues at the extreme ends of the both ITR (Elick et al., 1997) and the tetranucleotide target-site duplication, TTAA (Fig. 1A). Amino acid sequence alignment showed that the translation of HvPLE1.1 transposase shares $42 \%$ and $64 \%$ amino acid identity and similarity with Bombyx mori yabusame-1, and $32 \%$ and $56 \%$ amino acid identity and similarity, respectively, with T. ni piggyBac (Fig. 2). The PSORT webserver (http://psort.njbb.ac.jp) predicts two bipartite nuclear localization signals (Robbins et al., 1991) in DNA binding and the catalytic domain: RRHNIMRETPGPKGRAK, starting at amino acid residue position 99, and RKNKPEIPTCFQPKRTR, starting at position 364 (Fig. 1A).

Multiple copies of HvPLE1 were obtained with PCR by using the primer designed in the ITR. A total of four clones from three insects were sequenced and named HvPLE1.2 (950 bp), HvPLE1.3 (1083 bp), HvPLE1.4 (1103 bp), and HvPLE5 (1108 bp). These copies were $>98 \%$ identical to the HvPLE1.1 sequence, but with large deletions encompassing most of the region encoding the transposase (Fig. 1C).

We found a distinct type of PLE among the clones in the ITR PCR, which we named HvPLE2. Nine copies of HvPLE2 from five different individual insects were isolated, ranging in length from 1361 to 1369 bp . All copies of HvPLE2 contained multiple stop codons and frameshifts in the ORF. The nucleotide sequences of the nine copies HvPLE2.1-HvPLE2.9 were > 93\% identical to one another (Fig. 1B).

All HvPLE2 copies obtained contain putative large deletions in their $5^{\prime}$ region. Thus, reliable sequence alignment was possible only for a portion of the transposase-encoding region from 467 to 1136 bp (Figs 1B and 2). We were unable to find the copy of $H v P L E 2$ comparable with the full-length of other PLEs in repeated ITR PCR with a number of different individual $H$. virescens. The 222 amino acids corresponding to the putative ORF region of HvPLE2 have 56\% identity and $78 \%$ similarity with HvPLE1, $42 \%$ identity and $65 \%$ similarity with Bombyx mori yabusame-1, and $40 \%$ identity and $60 \%$ similarity with T. ni piggyBac (Fig. 2). As a result, HvPLE1 and HvPLE2 were recorded as two distinct groups in phylogenetic analysis (Fig. 3).

In a low stringency genomic Southern hybridization (washing at $50^{\circ} \mathrm{C}$ ), we observed distinct bands hybridized with the probe of the 1.8 kb T. ni piggyBac transposase

ORF, implying the presence of a low copy number PLE similar to T. ni piggyBac (Fig. 4).

## Distribution and diversity of piggyBac-like elements in Heliothis virescens

To estimate copy numbers and diversity of PLEs among individuals of $H$. virescens, we performed genomic Southern hybridization for EcoRI digested DNA by using a number of different probes (Fig. 4). The hybridization pattern with the probe HvPLE1-core (Fig. 1C) indicated 0-3 putative fulllength copies (bands) per individual ( $n=18$ ); the hybridization pattern with the probe $H v P L E 1$-common and with HvPLE2 (Fig. 1C) indicated five to 10 copies (bands) per individual (Fig. 4). The repeated hybridizations on the same membrane after stripping were designed to prevent cross-hybridization between HvPLE1 and HvPLE2 by high stringency hybridization and wash conditions. A Southern hybridization with the T. ni piggyBac probe at low stringency revealed zero to two bands per genome ( $n=14$, Fig. 4 and additional data not shown), indicating the presence of a low copy number that is similar to piggyBac of T. ni (Fig. 4). We were unable to clone the PLE closer to the T. ni piggyBac than HvPLEs in repeated degenerate PCRs with various stringencies, probably due to low number of the copy close to $T$. ni piggyBac being masked by other high copy number PLEs, such as HvPLE1 and HvPLE2.

Because the Southern blotting revealed considerable degrees of diversity in the banding patterns $(n=18)$ in both HvPLE1 and HvPLE2, we examined 10 additional individuals by using Vectorette PCR for insertion site variation. As was shown in the genomic Southern blotting, large variations in the band patterns for $5^{\prime}$ - and $3^{\prime}$-sides in both HvPLE1 and HvPLE2 were observed in the Vectorette PCR (Fig. 5).

## Insertion sites and inverted terminal repeats

We recovered a total of eight $5^{\prime}$ - and $123^{\prime}$ 'flanking sequences of HvPLE1 elements from four individual insects by inverse PCR and Vectorette PCR (Fig. 6). BLAST search of the flanking sequences of the HVPLEs found no significant match to known genes in the database, indicating that the insertions are likely located in non-coding

Figure 1. Nucleotide sequence and conceptual translations of putative transposase for the full-length piggyBac-like element $\operatorname{HvPLE} 1.1$ (A), nucleotide consensus sequence and putative translation of $H v P L E 2$ (B), and their structures (C). The putative 16 bp inverted terminal repeats (ITRs) are boxed; the inverted subterminal repeats are underlined. The upstream and downstream flanking sequences are in lower case. The potential duplicated tetranucleotide targets TTAA are in bold. Two regions of bipartite nuclear localization signal (NLS) are underlined (Robbins et al., 1991). The conserved regions corresponding to the degenerate primers used in this study are boxed on the HvPLE1. The indels in HvPLE2 are indicated by hash marks (\#) and the stop codons by asterisks (*). Structures of HvPLE1 and HvPLE2 are depicted with inverted terminal repeats (arrowheads) and transposase open reading frames (box). Lines indicate the clones obtained for entire sequences with the deletions (brackets). Inverted boxes are the regions used for probes in Southern hybridizations.
gttgaggetttttaaCCCTTAATTACTCGCGTGGGGTATATTTAACCCCACAGCATATTTGAAGCGTTGTATCTC CACCATTTTTAAAGGTACCCTCATAGCGTTCTTAGTAGCTGCCTGAATACCTCCCCCCGCTGCAAATCAGTCGCG CACCATCCGCTCTGTGTCGTGTGGTTGTGTGAGGAGATCGCGTTTGGGGTAAATGTTGCCCCACGAGAGTGTTAGTG CGACTTTTTTTGGACGAGTGAGTTTTTTTTAAATTGCTTTTATGTGACTACAATACTAAACTGTTAGTTTT M S K M A S K R L S N T
 TCATCCAGAGTGACCACAACTCAGAATCTCAAGAAAGTGCCAATGAAATCGATTCAGAATGGAGTGATACCGATA ATGAACCGCTGAGTAGACTCGCAAGTGAGGATTCTGATAACTTTTATTTTTCAAAAAATAAATGCACAAAGTGG
N
E
F
L
S R L A S E CAAAAGAGCCGCCGCGTACTAGCGTTCGAGTTCGTAGACATAATATTATGAGGGAAACACCAGGACCTAAGGGAA
 GAGCCAAAGAGATACAAACAATCTCAGAAGCATTCTTTTTGTATGTTTTCAATGGACACAGTCAATTTAGTACTGC R A K E I \& T I S E A F F C M F S M D T V N L V L
 AAGAACTTTTGGCTTACCTAGGTCTGCTTTACATGTCTGGTGTGCTACGTTCATCTCACTTGAACTTCAAAGAT E E L L A Y L G L L Y M S G V L R S S H L N F
 GATGTGTTCGTTTCGATGACAAAAATACGAAGTCTGAAAGACTAAAGACAGACAAACTAGCAGCAGTCAGAGAGT

 CTGCCTTTCGAGGAAGATTTTCTGGTGTTGTTTATATGCCCAACAAACCTACCAAGTACGGCATAAAGCATTATG Cacce CACTCGTAGACTCTGCAACATTTTATTTATTGAAATTTGAGATTTATGCTGGAGTACAACCTGAGGGTCCGTATC
 GAATGCCTAATGATACAGTAAGTTTGGTAAAGCGTATGACAGAACCCATTTGGGGTACTGGTCGAAATGTTACGA TGGACAACTGGTTTACTAGTGTCCCTCTTGCAAATATACTTCTAAAAGATCACCAGCTTACTATGGTTGGAACTA TTCGCAAAAATAAACCGGAAATTCCAACTTGCTTCCAGCCTAAACGAACACGAACTGAGCATTCCAGTCTGTTTG TTCGCAAAAATAAACCGGAAATTCCAACTTGCTTCCAGCCTAAACGAACACGAACTGAGCATTCCAGTCTGTTTG
$I \quad R \quad K \quad K \quad \mathrm{~K}$ GTTTCCAAGAAGACGTGACACTTTGCTCTTACGTTCCAAAAAAATCTAAAGCTGTACTGCTGATTTCGTCAATGC

 GTGTAGATACTAACGACCAAATGTGTGCTAACTATAACGTGGGCAGACGTACAAAGAGATGGCCTATGGTTATAT解

 TGCCTAGGGCCGTACAAAAACGGCTGAAAAGAAATGCTGAAGTTCAGGATCCTGGCTCCACTTCCAGAGGTGGT

 GCCACCATCACATCTGTCACGACCATTCCACTATGATATGTGATAAATGTATTGATTAAAAAGTTCCTACATTTA H C H D H S T M I C D K C I D
АААТААТТТТСАТААТАААААТАААААТАТGТСАТТАСААСТАТGTTTTATTGTACCTTAGAGCAATGTTAGCTTT ATACCCCACGCGAGCGTAAGTGTAACTATATGGA CGCGAGTAATTAAGGGItaagttttataaacctta

CCTTAATTACTCGCGCGGGGTCATTCTGACCCCAGAGCGCATTTAAAAGCGTATAACTATTAGAGTTTTTTAAGT TATAAACAAAACAGTCCAGGTAGCTTCTAACTTGTCGGTACCTTTAACGTCTGTTTGCGGCAAGCAGCGCCGGA GAGTGGACTCGTCTCTGTGATAGTGCTGGGGTCGATCTGACCCCACGCGAGCATAAACGTAAGTTTTTTGAAACG M Y Y Y H L L V I GTATACTGTTATTCTTCAATTCGTGTGCAATAACAATAAAATATTTGTTTTACATTATTACCAGTTCGATATTAT TACATTTATGTTCACTTTTACTTACAGACAATGAGTCGGCTCAAAGATAATGATATTCTTCAATTATTAGAAGAC aganagmancacictaccan
 AAACAGACAACGCCAAGAACAAAGTGCACTATTTGGCTTCAAAGAAAATATGACGCTCTGTTCATATGTGACCAA
 AGAAATTATTTTATTCTACAATAAAACCAAAGGTGGCGTCGACACCAATGATCAGATGTGTTCCACATACAACGT
$\mathrm{E} \quad \mathrm{I}$
I
L
F
Y
N

 ССССТTTCGCCAAACAAGAGCGCAAATACCGCCACTACCAAGAGTTCTAAAAAGGCGCCTACAAAAAAATTCAG $P \quad F \quad R \quad Q \quad T \quad R \quad A \quad Q \quad I \quad P \quad P \quad L \quad P \quad R \quad V \quad L \quad K \quad R \quad R \quad L \quad Q \quad K \quad N \quad S$ ATCTTGCAACGCCTGGTCCAAGTGGAGTTTCCAACGTTTCCAAAAAACGCTTCCGTTGTGAAATTTGCCCAAGGT TTAAGGACCGAAAAACGTCGGATGTGTGCATGAAATGCAATAAACACAATTGCAGCGAACACATAAAAAAAAATT
 GTGATTATTGTTAGGAGTTTTAAGTATATTTTTGGAAGACTTTTTTTTGTTTCAGAAAAGCTATTTAGCAAAGTT TAATTATCCTGATCTCATTAATATTGTTCCTACCTAAAGTTTAATAAAAGTTGATTTTCATAAAATATTTTTTTTT TTGAATTTTCTGCCCATTTGTGTTTGGGGTCACTGTGACCCCATGCGAGTATCAATGCAAGTTTTTTAGCGCGA GTAATTAAGGG



Figure 2. Multiple transposase sequence alignment of PLE-related to the HvPLEs. The yabusame-1 from B. mori (GenBank accession number BAD11135) and the piggyBac from Tricoplusia ni (AAA87375) are aligned together with HvPLEs. The HvPLE2 transposase is the reconstructed sequence based on a consensus of a total nine clones, and ignored one frameshift. Inverted boxes are identical and grey boxes are similar sequences in $50 \%$ majority.


Figure 3. Phylogenetic relationship among piggyBac-like elements in amino acid sequence for the transposases (A) and among the nucleotide sequences for HvPLE1 and HvPLE2 copies. Unrooted tree were generated in PAUP 4.01b or in MEGA3 with neighbour-joining tree with 1000 bootstrapping. Only the bootstrapping value lower than $80 \%$ are written on the branch. Amino acid sequences without GenBank accession numbers are obtained from Sarkar et al. (2003). The HvPLE sequences are deposited in GenBank with accession numbers: HvPLE1.1 (DQ407726), HvPLE1.2 (DQ407727), HvPLE1.3 (DQ407728), HvPLE1.4 (DQ407729), HvPLE1.5 (DQ407730), HvPLE2.1 (DQ407731), HvPLE2.2 (DQ407732), HvPLE2.3 (DQ407733), HvPLE2.4 (DQ407734), HvPLE2.5 (DQ407735), HvPLE2.6 (DQ407736), HvPLE2.7 (DQ407737), HvPLE2.8 (DQ407738), HvPLE2.9 (DQ407739).

Figure 4. Genomic Southern hybridizations of seven different individuals of $H$. virescens for HvPLE1, HvPLE2 and T. ni piggyBac. The blot for EcoRI digested genomic DNA was repeatedly used for hybridizations with four different probes. The common bands appeared in both blots for HvPLE1-core (putative full length) and for HvPLE1-common (putatively, including deletion copies) are marked with small empty circles. Note that the T. ni piggyBac probe ( 1.8 kb ) was hybridized in low stringency, whereas all other probes were hybridized in high stringency.


HvPLE2
a b

T. ni piggyBac


Figure 5. A representative picture showing Vectorette PCR of randomly selected 10 H . virescens individuals. The Vectorette PCR products for HvPLE1 and HvPLE2 for both $5^{\prime}$ and $3^{\prime}$ sides are displayed on $8 \%$ polyacrylamide gel. The picture colour is inverted and adjusted for maximum visibility.
A. HvPLE1

|  |  |
| :---: | :---: |
| VP1.11 | TTTATTAATCATCATCAAAAAATATTTAACTCTTAATTACTCGCGTG |
| VP1.9 | CGATGAGCTAATATTACGACACAAAATAACTCTTAATTACTCGCGTG |
| VP3.11 | AGCTGTTACAAATTAACCTTGATAATTAACCCTTAATTACTCGCGTG |
| VP1.6 | GTTTAGTATAGATTTTACTATTTCATATTCCCTTAATTACTCGCGTG |
| VP5.4 | ATTCTTAGTTCAGGTGGAGTTTTATTTAACTCTTAATTACTCGCATG |
| VP1. 10 | ACCTTTAAGGCGAGGTTGAGGCTTTTTAACCCTTAATTACTCGCGTG |
| SM 1.1 | ATGCTTATACCATATAAAACGGACCTTAACTCTTAATTACTCGCGTG |
| PH13.3 5F | GTGTACCACCACTTGAAGAAAATCATTAACCCTTAATTACTCACGCG |
| Conensus | TTAACCCTTAATTACTCACG |

<<<<<3' ITR $\lll \ll$
GACGCGAGTAATTAAGGGTTAATAAAAGAGAGAAACGGATATAAAAA GACGCGAGTAATTAAGGGTTAAAGGTCTAAAATAGCTAG
GACGCGAGTAATTAAGGGTTAAGGTATTTTAGCGATAGTTTTTGACA GACGCGAGTAATTAAGGGTTAAGGTATTTTAGCGATAGTTTTTGACA GACGCGAGTAATTAAGGGATAATAGGTAAAGGTAAACGGAATTTATA GACGCGAGTAATTAAGGGATAATAGGTAAAGGTAAACGGAATTTATA GACGCGAGTAATTAAGGGTTAAGTTATATAAACCTTAAATATTATTT GACGCGAGTAATTAAGGGTTAATTATATATTTTTTTATAGAAACATT GACGCGAGTAATTAAGGGTTGATAATAAATATGATGTAATTAATTTA GACGCGAGTAATTAAGGGTTAAGAGCGTAGAGAAATTATACAGAATT GACGCGAGTAATTAAGGGTTAATTAAGTTGCCATGCATATTCAACTT GACGCGAGTAATTAAGGGTTAAGGAGAAATTCGGCTTGACTCCACTG GACGCGAGTAATTAAGGGTTAAATAAGGAAACACCTGTTAATTTAAT CGCGAGTAATTAAGGGTTAA

## B . HvPLE2

SM3.1 ATAATTATCTCATTTGCGTTGGTTCTTAACCCTTAATCACTCGCGTG
SM3.2 GACCCATAACGACTGCCAAAGATGTTTAACCCTTAATCACTCGCGCG
SM3. 7 AGGTTAACGAGCATTTTATCCCAGTTTAACCCTTAATCACTCGCGC
Conensus

SM4. 2
SM4. 5
Consensus
TAGCGCGAGTGATTAAGGGTTAAATAGTTCCACATTTGAGTTTTCAC
TAGCGCGAGTGATTAAGGGTTAAGGGCTAACTCGTGACGTCACAGGT CGCGAGTGATTAAGGGTTAA

| C. PLE | (piggyBac) ITRs |  |
| :--- | :--- | :--- |
| HVPLE1 | CCCTTAATTACTCGCG... | $\ldots$. CGCGAGTAATTAAGGG |
| HVPLE2 | CCCTTAATCACTCGCG... | $\ldots$. CGCGAGTGATTAAGGG |
| T. ni | CCCTAGAAAGATA---... | $\ldots .-$--TATCTTTCTAGGG |
| B. mori | CCCGGCGAGCATGAGG... | $\ldots$. CCTCATGCTCGCCGGG |

D. Inverted subterminal repeats

| HvPLE1 | CTCGCGTGGGGTATATTTAACCCCA. | .TGGGGTTATATATACCCCACGCGAG |
| :--- | :--- | :--- |
| HvPLE2 | CTCGCGCGGGGTCATTCTGACCCCA. | .TGGGGTCACTGTGACCCCATGCGAG |
| T. ni | TGCGTAAAATTGACGCATG. . | ....CATGCGTCAATTTTACGCA |

Figure 6. Nucleotide sequences of the inverted terminal repeats (ITRs) and the flanking genomic sequences in HvPLE1 (A), HvPLE2 (B), and the ITR sequences for HvPLEs, T. ni piggyBac and B. mori yabusame-1 (C), and sequence comparisons of inverted subterminal repeats in HvPLEs and T. ni piggyBac (D).
regions. Most of the insertions occurred at target site TTAA, which is a characteristic of all members of TTAA-specific family DNA transposons (Fraser et al., 1996); some exceptions existed, such as ATAA and TATT in 5', and ATAA and TTGA in $3^{\prime}$ insertion sites of the HvPLE1 (Fig. 6A). Three $5^{\prime}$ - and two $3^{\prime}$-flanking sequences obtained from the HvPLE2 insertions were found to be strictly conserved for the TTAA target site duplications (Fig. 6B).

The 16 bp perfect ITRs are well conserved in both HvPLE1 and HvPLE2, with some minor exceptions (Figs 1 and 6). A single nucleotide difference was found between the ITRs of HvPLE1 and HvPLE2: T to C in $5^{\prime}$ ITR and A to G in $3^{\prime}$ ITR. It is interesting that the different bases are located in the reverse complementing positions of the inverted sequences in each type of element (Fig. 6C). A 25 bp inverted subterminal repeat was identified in both HvPLE1 and HvPLE2 with similar structures and sequences each other (Figs 1 and 6D). The $5^{\prime}$ inverted subterminal repeat partially overlaps with the 16 bp $5^{\prime}$ ITR, while the $3^{\prime}$ repeat is located in 20 bp upstream of the $16 \mathrm{bp} 3^{\prime}$ ITR.

## Discussion

A large diversity of PLE in eukaryotes has recently been documented in a computational analysis of genomic sequence data (Sarkar et al., 2003). Because the computational analysis uses the publicly available databases, knowledge on the diversity of PLEs in agriculturally important insect pests is limited due to relative paucity in the sequence information available. Therefore, we used degenerate PCR and genomic Southern hybridization to explore PLEs in tobacco budworm, an important lepidopteran pest of cotton and other crops in the United States.

Our approach, particularly the universal degenerate primers designed for the PLEs, seems to be a valuable tool to study the diversity of PLEs in other organisms. The same degenerate primers have been successfully used to isolate PLEs in the Pectinophora gossypiella, and Helicoverpa zea (Wang and Park, unpublished data), suggesting that the degenerate primers may be extended to identify PLEs in other divergent species, particularly in lepidopterans.

We identified two different PLEs in $H$. virescens with moderate to low copy numbers for each. Sequence analysis revealed that HvPLE1 and HvPLE2 are closely related to each other and occur in the clade with T. ni piggyBac in the phylogenetic analysis (Fig.3). One of the clones for HvPLE1, HvPLE1.1, revealed an intact full-length element. We also found a low copy number fragment that crosshybridized to the T. ni piggyBac probe.

Invasions of this species (or populations) by HVPLE1 and by HvPLE2 had likely occurred in separate events. The HvPLE2, with greater sequence variation is suggestive of earlier invasion of HvPLE2 followed by HvPLE1. The average proportions of nucleotide differences ( $p$ distance) were $0.021 \pm 0.005$ (SE in 1000 bootstrap replications in MEGA3) among HvPLE1 and $0.081 \pm 0.02$ among HvPLE2 sequences in the region encoding transposase (Fig. 2 and Supplementary data 1). Thus, the age of HvPLE2 is $\approx 4$ times older than that of HvPLE1, assuming constant running of the molecular clock.
It is interesting that a striking similarity between HvPLE1 and HvPLE2 is found in the ITRs (15/16 nucleotides), whereas the ITRs in other closely related PLEs or piggyBac are more divergent (Fig. 6C). The conserved structure and sequence is extended to the subterminal repeat that may
be important in the interaction between transposase and the TE. Highly conserved ITR, the substrate of transposase, suggests a possible coevolution between HvPLE1 and HvPLE2 by transmobilization between these two elements.

Current status of mobility of a TE may be indicated simply by presence of the copy with intact transposase and its substrate ITR. The presence of an intact copy for HvPLE1 was shown by cloning and sequencing and by Southern hybridization with the probe HvPLE1-core for the putative full-length copies (Fig. 4). The presence of an intact copy could be the consequence of purifying selection in which the intact copies are selectively favoured. Alternatively, the invasion of the TE in this species may have occurred recently, thus the intact copy could be remaining by chance, while random mutations are being accumulated including the mutation causing amino acid substitution(s) inactivating the enzyme. We were unable to test the null hypothesis of purifying selection (Kumar et al., 2004) on the HvPLE1 copies due to the small number of informative sites in the sequences encoding transposase. These observations favour the scenario of recent invasion rather than purifying selection for the presence of an intact copy of HvPLE1, but do not rule out the possibility of purifying selection upon HvPLE1.

For HvPLE2, however, we found significant levels of purifying selection. The null hypothesis of neutral evolution was tested by using the $Z$-test that is based on the ratio between synonymous and non-synonymous change for the NeiGojobori model (Kumar et al., 2004). Pair-wise comparisons among the HvPLE2 sequences (10 sequences, total 35 pairs) found that 29 pairs deviated significantly ( $P<0.05$ ) from the neutrality for purifying selection (high non-synonymous mutation rate). We conclude that the intact coding in the sequence encoding transposase has been selectively favoured in the evolution of HvPLE2 copies, though we were not able to identify the copy with the full-length transposase similar to those of other PLEs. This is contrasted to the case of mariner-like element (MLE) evolution for which neutral evolution of the copies within a host species was suggested (Lampe et al., 2003; Witherspoon \& Robertson, 2003) and as it was also found in our previous study (Wang et al., 2005).

Another indicator for the history of transposition of a TE may be diversity of the insertion sites. Inactive copies of TE will be fixed or lost in the population over time if they are neutral. Therefore, the insertion sites for TEs will become more homogeneous (Deceliere et al., 2005) within the population over time. For example, our earlier study with inactivated copies of MLE in the pink bollworm PgMLE1 found that the insertion sites are highly homogeneous within and among populations (Wang et al., 2005). This result for the PgMLE1 copies was interpreted as inheritance of ancestral insertions when the insect host invaded the

New World. In contrast, we found large variation in the insertion sites in all three HvPLEs in Southern blotting (Fig. 4 and other data not shown, $n=18$ ) and also in TE displays (Fig. 5, $n=10$ ).

Three possible reasons are proposed to explain the different distribution patterns between HvPLEs and PgMLE1. First, the large insertion site variation among individuals in the HvPLEs could be simply due to the recent invasion of HvPLEs (i.e. before the homogenization has taken place in the population). Next, the different patterns may be contributed by different degrees of selection pressure on the two different TEs. A PLE is known to leave no footprint (i.e. T. ni piggyBac; Fraser et al., 1996; Thibault et al., 1999), whereas MLE leaves a typical excision footprint of 5 bp in the host genome (Plasterk et al., 1999), which may be detrimental to the host, increasing the genetic load upon mobilization, particularly if it happens in a coding region. Thus, the fitness costs of MLE are determined not only by its copy number (Charlesworth \& Langley, 1989), but also by mobile events adding accumulated cost by its footprints. Therefore, selection against the mobility of PLE is considered to be lower than that in MLE in this aspect, and may have contributed to the large insertion site variation in HvPLEs. Lastly, another important difference between PLE in $H$. virescens and MLE in pink bollworm is the population structure of insect host. The $H$. virescens is generally known for its large effective population size (Taylor et al., 1996). The pink bollworm expanded its habitat recently, with the expanding cultivation of cotton and seed trade. Therefore, the PgMLE1 may have been under a strong recent bottleneck effect, homogenizing insertion site variations, whereas HvPLEs have likely been under genetic drift for a long time in a large population.

## Experimental methods

We amplified a fragment of HvPLE1 by a degenerate PCR with primers based on a highly conserved region in the multiple PLE sequence alignment (Sarkar et al., 2003). The nucleotide sequence obtained from the partial fragment was used for cloning a full-length copy by inverse PCR, which revealed ITR. One primer anchored in the ITR was used to amplify multiple copies of HvPLE1. In addition to the multiple copies of HvPLE1, another distantly related element HvPLE2 serendipitously was identified in the ITR PCR. Multiple copies of each HvPLE1 and HvPLE2, and their flanking sequences, were obtained by Vectorette PCR and ITR PCR. The diversity in insertion sites was examined by using genomic Southern hybridization and Vectorette PCR.

## Isolation of genomic DNA, cloning and sequence analysis

The H. virescens strain YDK was obtained from Dr Fred Gould (North Carolina State University), which was originally established from a collection of tobacco budworm eggs from three adjacent counties in North Carolina in 1988 (Gould et al., 1995). The samples used in this study are randomly chosen individuals in the same generation. Genomic DNA for PCR and Southern
hybridization was extracted from a single larva or adult by a phenol-chloroform extraction method as previously described (Wang et al., 2005). The PCR products were cloned into pGEM-TEasy vector (Promega, Madison, WI, USA) and sequenced. The DNA sequences were compared with non-redundant databases by using the NCBI server with tblastx and tblastn (www.ncbi.nlm.gov/ cgibin/BLAST). Sequence alignment was performed with CLUSTAL X (Thompson et al., 1994). The aligned sequences were used for construction of phylogenetic tree in PAUP 4b. 2 (Swofford, 2000) or in MEGA3 (Kumar et al., 2004).

## Polymerase chain reaction strategies

A pair of degenerate primers, PLEF266: $5^{\prime}$-ACNRTNGAYGAR-CARYT-3' and PLER351: 5'-SWNGTRAAVMARTTRTC-3', were designed in the highly conserved regions 266-271 and 346-351 in $T$ ni. piggyBac transposase after multiple sequence alignment of 11 PLEs (Sarkar et al., 2003). In general, PCR was performed in a $25 \mu$ l reaction volume containing $20-50 \mathrm{ng}$ gDNA, $0.8 \mu \mathrm{~m}$ of each degenerate primer, 0.2 mm of each dNTP, 2 mm of $\mathrm{MgCl}_{2}$, and $1 \mu \mathrm{l}$ (1 unit) of REDTaq Genomic DNA Polymerase (Sigma, St Louis, MO, USA) in buffer supplied by the manufacturer ( 100 mm Tris-HCl, pH 8.3, 500 mm KCl , and $0.1 \%$ gelatin). Touchdown PCR protocol was used for the degenerate PCR, which consisted of one cycle at $94^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, 10$ cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 50-41^{\circ} \mathrm{C}$ (decreasing by $1^{\circ} \mathrm{C} /$ cycle) for 30 s , and $72^{\circ} \mathrm{C}$ for 1 min , followed by 25 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 40^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min , and a final extension at $72{ }^{\circ} \mathrm{C}$ for 10 min .

Inverse PCR was followed with primers designed in the sequence obtained from the degenerate PCR. About $2 \mu \mathrm{~g}$ genomic DNA was digested with either EcoRI, Xhol, Pstl, Mlul or HindIII (Promega) for $10-16 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ in a $20 \mu \mathrm{l}$ total volume. The enzyme was inactivated at $70^{\circ} \mathrm{C}$ for 20 min . The digested DNA was diluted to final $4-6 \mathrm{ng} / \mu \mathrm{l}$ and ligated at $4^{\circ} \mathrm{C}$ for 16 h , followed by precipitation and resuspension in $20 \mu \mathrm{l}$ of water. The following two primer pairs were used for the nested inverse PCR:
External primer pair
Forward primer HPEF: 5'-CCGTATCGAATGCCTAATGA-3' Reverse primer HPER: 5'-CAGGTTGTACTCCAGCATAA-3' Internal primer pair

Forward primer HPIF: 5'-TGGTAAAGCGTATGACAGAA-3'
Reverse primer HPIR: 5'-TACTTGGTAGGTTTGTTGGG-3'
The full-length PLE copy HvPLE1.1 was successfully amplified from the same genomic DNA that was used for inverse PCR. The primers used for the HvPLE1.1 were located in the $5^{\prime}$ and $3^{\prime}$ of flanking sequences extended to the part of ITR: HvFP: 5'-GTTGAGGCTTTTTAACCCTT-3' and HvRP: 5'-TAAGGTTTATAA AACTTAACCC-3'. Multiple copies of HvPLE1 or HvPLE2 were obtained by PCR using a single primer designed on the 16 bp ITR including TTAA target site duplication ( $5^{\prime}$-TTAACCCTTAAT-TACTCGCG-3').

Genomic Southern hybridization and Vectorette polymerase chain reaction for transposable element display
Genomic DNAs from individual TBW were digested with EcoRI, electrophoresed on a $0.8 \%$ agarose gel, transferred to positively charged Hybond- $\mathrm{N}^{+}$nylon membrane (Amersham, Piscataway, NJ, USA) by using a vacuum blotter, and fixed by ultraviolet light in a UVP HL-2000 Hybrilinker. The probes were labelled with [ ${ }^{32}$ P]dCTP by the random priming method by using the Megaprime ${ }^{\text {TM }}$. DNA labelling system (Amersham). Hybridizations were
performed at $65^{\circ} \mathrm{C}$ in Rapid-Hyb Buffer (Amersham), membranes were washed at high stringency conditions, and the probe with T. ni piggyBac was washed at low stringency $\left(50^{\circ} \mathrm{C}\right)$. The membrane was used for hybridization with four different probes: HvPLE1-core that only hybridizes to putative full-length HvPLE1; HvPLE1-common that detects the deleted copies of HvPLE1; HvPLE2; and the 1.8 kb T. ni piggyBac ORF region (Fig. 1).

We employed a modified-Vectorette PCR (Riley et al., 1990; Wang et al., 2005) to obtain the flanking sequence of HvPLE1 and HvPLE2 and to examine the diversities of insertion sites. The Vectorette construct, genomic DNA digestion/ligation and PCR were performed according to Wang et al. (2005) with the following primers:
PLE1.R1:5'-CTACTAAGAACGCTATGAGG-3' (HvPLE1 5' external) PLE1.R2: $5^{\prime}$-TGGAGATACAACGCTTCAAATA-3' ( $5^{\prime}$ internal) PLE1.F1: 5'-TGTCACGACCATTCCACTAT-3' ( $3^{\prime}$ external) PLE1.F2: 5'-CCATGCGAGCGTAAGTGTAA-3' (3' internal) PLE2.R1:5'-AACTCTAATAGTTCTACGCTTT-3' (HvPLE25' external) PLE2.R2: $5^{\prime}$-TAAATGCGCTCTGGGGTCAG- $3^{\prime}$ ( $5^{\prime}$ internal) PLE2.F1: 5'-ATTTGCCCAAGGTCTAAGGA-3' ( $3^{\prime}$ external) PLE2.F2: 5'-GAATTTTCTGCCCATTTGTG-3' ( $3^{\prime}$ internal)

## Acknowledgements

We thank Dr Fred Gould for providing insects and Dr Srini Kambhampati for reviewing an earlier version of this manuscript. This paper is contribution no. 06-89-5 from the Kansas Agricultural Experiment Station, Manhattan, Kansas.

## References

Cary, L.C., Goebel, M., Corsaro, B.G., Wang, H.G., Rosen, E. and Fraser, M.J. (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172: 156-169.
Charlesworth, B. and Langley, C.H. (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23: 251-287.
Deceliere, G., Charles, S. and Biemont, C. (2005) The dynamics of transposable elements in structured populations. Genetics 169: 467-474.
Ding, S., Wu, X., Li, G., Han, M., Zhuang, Y. and Xu, T. (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122: 473-483.
Elick, T.A., Lobo, N. and Fraser, M.J. Jr (1997) Analysis of the cis-acting DNA elements required for piggyBac transposable element excision. Mol Gen Genet 255: 605-610.
Fraser, M.J., Smith, G.E. and Summers, M.D. (1983) Acquisition of host cell DNA sequences by Baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis virus. $J$ Virol 47: 287-300.
Fraser, M.J., Ciszczon, T., Elick, T. and Bauser, C. (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5: 141-151.
Gould, F., Anderson, A., Reynolds, A., Bumgarner, L. and Moar, W.
(1995) Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J Ecol Entomol 88: 15451559.

Handler, A.M. (2002a) Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica 116: 137-149.
Handler, A.M. (2002b) Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochem Mol Biol 32: 1211-1220.
Handler, A.M. and McCombs, S.D. (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9: 605-612.
Horn, C., Offen, N., Nystedt, S., Hacker, U. and Wimmer, E.A. (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163: 647-661.
Kazazian, H.H. Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626-1632.
Kumar, S., Tamura, K. and Ney, M. (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinformatics 5: 150-163.
Lampe, D.J., Witherspoon, D.J., Soto-Adames, F.N. and Robertson, H.M. (2003) Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20: 554-562.
Lorenzen, M.D., Brown, S.J., Denell, R.E. and Beeman, R.W. (2002) Transgene expression from the Tribolium castaneum Polyubiquitin promoter. Insect Mol Biol 11: 399-407.
Plasterk, R.H., Izsvak, Z. and Ivics, Z. (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15: 326-332.
Riley, J., Butler, R., Ogilvie, D., Finniear, R., Jenner, D., Powell, S. et al. (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18: 2887-2890.
Robbins, J., Dilworth, S.M., Laskey, R.A. and Dingwall, C. (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615-623.

Robinson, A.S., Franz, G. and Atkinson, P.W. (2004) Insect transgenesis and its potential role in agriculture and human health. Insect Biochem Mol Biol 34: 113-120.
Sarkar, A., Sim, C., Hong, Y.S., Hogan, J.R., Fraser, M.J., Robertson, H.M. and Collins, F.H. (2003) Molecular evolutionary analysis of the widespread piggyBac transposon family and related 'domesticated' sequences. Mol Genet Genomics 270: 173-180.
Swofford, D.L. (2000) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MA.
Taylor, M.F.J., Park, Y. and Shen, Y. (1996) Molecular population genetics of sodium channel and juvenile hormone esterase markers in relation to pyrethroid resistance in Heliothis virescens (Lepidoptera: Noctuidae). Ann Entomol Soc Am 89: 728-738.
Thibault, S.T., Luu, H.T., Vann, N. and Miller, T.A. (1999) Precise excision and transposition of piggyBac in pink bollworm embryos. Insect Mol Biol 8: 119-123.
Thibault, S.T., Singer, M.A., Miyazaki, W.Y., Milash, B., Dompe, N.A., Singh, C.M. et al. (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36: 283-287.
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W : improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
Wang, J., Staten, R., Miller, T.A. and Park, Y. (2005) Inactivated mariner-like elements (MLE) in pink bollworm, Pectinophora gossypiella. Insect Mol Biol 14: 547-553.
Wimmer, E.A. (2003) Innovations: applications of insect transgenesis. Nat Rev Genet 4: 225-232.
Witherspoon, D.J. and Robertson, H.M. (2003) Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Evol 56: 751-769.

## Supplementary data

Sequence alignment of HvPLEs in MEGA3 format.

